RTTDIT3 pecember from Hermanus 2023

SKY CHARTS

EVENING SKY DECEMBER $8^{\text {th }}$ at $22 h 00$ (NORTH DOWN)

EVENING SKY DECEMBER $8^{\text {th }}$ at $22 h 00$ (SOUTH DOWN)

THE SOLAR SYSTEM

PLEASE NOTE: all events are as predicted from HERMANUS, Western Cape, South Africa.
HIGHLIGHTS for DECEMBER FROM THE SKY GUIDE 2023

The Moon and Jupiter, although not visible at closest approach (during daylight), will keep close company throughout the evening of December $23^{\text {rd }}$. At about 21 h00, Jupiter and his four Galilean satellites cross the meridian at an altitude of 39°. Callisto is to the west of Jupiter at 9.5^{\prime} while $\mathbf{I o}$ is close in at 1^{\prime} to the east. Europa and Ganymede are closely paired at 3.5 ' further east. Despite the proximity of the moon, these satellites should be visible in a small telescope.

SUGGESTED EVENING OBSERVATION WINDOW

(Lunar observations notwithstanding)

Date		Moon	Dusk end
$\mathbf{1}^{\text {st }}$ December	Rises	$\mathbf{2 3 h 4 0} \mathbf{(\mathbf { 8 4 \% })}$	$\mathbf{2 1 h} 23$
$\mathbf{1 5}^{\text {th }}$ December	Sets	$\mathbf{2 2 h 3 9} \mathbf{(5 \%)}$	$\mathbf{2 1 h 3 7}$

SOLAR SYSTEM VISIBILITY

Sun	Ophiuchus	Rise:	05h24	Never look at the sun without SUITABLE EYE PROTECTION!
Length of day	14 hours 23 minutes	Transit: Set:	$\begin{aligned} & 12 \mathrm{~h} 35 \\ & 19 \mathrm{~h} 46 \end{aligned}$	
Mercury	Sagittarius	Rise:	06h47	Low in the west after sunset
Magnitude	-0.2	Transit:	14h05	
Phase	49\%	Set:	21h22	
Venus	Virgo	Rise:	03h14	"The Morning Star"
Magnitude	-4.1	Rise: Transit:	09h47	
Phase	70\%		16h20	
Diameter	16"			
Mars	Ophiuchus	Rise:	05h01	Too close to the sun
Magnitude	+1.4	Transit:	12h09	
Phase	100\%	Set:	19h17	
Diameter	$4 "$			
Jupiter	Aries	Rise:	16h25	All night
Magnitude	-2.8	Transit:	21h52	
Diameter	47"	Set:	03h23	
Saturn	Aquarius	Rise:	11h14	Evening
Magnitude	+0.9	Transit:	17h51	
Diameter	$17 \times$	Set:	00h32	
Uranus	Aries	Rises:	17h32	All night
Magnitude	+5.6	Transit:	22h45	
Diameter	$4 "$	Set:	04h01	
Neptune	Aquarius	Rise:	13h07	Evening
Magnitude	+7.9	Transit:	19h17	
Diameter	$2 "$	Set:	01h32	
Pluto Magnitude	$\begin{aligned} & \text { Sagittarius } \\ & +14.5 \end{aligned}$	Rise:	08h31	Evening
		Transit:	15h41	
		Set:	22h50	

Phase: In a telescope, the inner planets (Mercury, Venus and Mars) appear to us in phases, depending on the angle of the Sun's illumination, as does the Moon. The angular diameter is given in arc seconds.
Transit: When an object crosses the local meridian it is said to 'transit'. The local meridian is an imaginary line from the horizon directly north passing overhead through the zenith to the horizon directly south.
Magnitude: we are accustomed to hearing stars described in terms of 'magnitude'. For example, the planet Jupiter at magnitude -1.8 is considerably brighter than the star Antares (in Scorpius) at +1.05 . The scale is 'inverse'; the brighter the object, the lower the number. A 'good' human eye on a clear night can see down to a magnitude of about +6 .

THE MOON

Crater Grimaldi

Some people have asked what that dark spot is over on the western limb. It is indeed a prominent landmark in a seldom viewed area. Not particularly photogenic or remarkable, this crater is featured this month for recognition and identification.
LOCATION- near the western limb of the Moon. It lies to the south-west of Oceanus Procellarum with crater Riccioli to its north-west.

Physical features- The inner rim, 174 km in diameter and heavily worn and eroded by subsequent impacts, forms a low, irregular ring of hills, ridges and peaks, rather than a typical crater rim. However, there are peaks remaining that reach heights of over 2000 metres. The mare lava floor is the most notable feature of this crater, forming a flat, relatively smooth and featureless surface with a particularly low albedo. The dark shade of the floor contrasts with the brighter surroundings, making the crater easy to locate.
Beyond the basin are the scattered remnants of an outer wall with a diameter of 220 km . The scattered remnants of the outer wall measure 220 km . This exterior rim is more intact to the north and west of the crater than elsewhere. To its southeast is a system of rilles named the Rimae Grimaldi. To the north-west, rilles belonging to the Rimae Riccioli approach the western edge of Grimaldi's rim.

A mass concentration (mascon), or gravitational high, has been identified in the centre of Grimaldi (corresponding with the mare). The mascon was
 mapped at high resolution by GRAIL.

METEOR ACTIVITY

$\frac{\text { Sky Guide }}{\underline{2023}}$	Maximum Date/Time	Moon on max Date/Time	Duration	Radiant	ZHR*	Velocity $\mathrm{Km} / \mathrm{sec}$
December	December 2	77\%	December	In Phoenix		
Phoenicids	20h30-02h00	Rising 23h40	1 to 9	$12^{\circ} \mathrm{NW}$ of Achernar	5	18
Puppid- Velids	$\begin{gathered} \text { December } 7 \\ 22 \mathrm{~h} 30-03 \mathrm{~h} 30 \end{gathered}$	$\begin{gathered} 32 \% \\ \text { Rising 01h58 } \end{gathered}$	December 1 to 15	$18^{\circ} \mathrm{SE}$ of Canopus	10	40
Geminids	December 14 23h30-03h00	$\begin{gathered} 1 \% \\ \text { Rising 06h21 } \end{gathered}$	$\begin{gathered} \text { December } \\ 4 \text { to } 20 \end{gathered}$	Castor	150	36

* A word of caution regarding predicted Zenithal Hourly Rates:

ZHR is an ideal value. It is by definition the number of meteors a single observer could possibly see during a shower's peak with the radiant directly overhead on a clear, dark night. Most observers,however, will not see as many meteors as the ZHR suggests. Also, the presence of a bright moon can seriously diminish the observation of meteor activity.

For more meteor watching details, please see SGSA 2023, pages 86-87.

Derek Duckitt's processing of the Orion Nebula (M42) from the Hubble Space Telescope
(image oriented to approximately 2023 December 8 at 22h00)

Derek used basically the same Photoshop/Siril procedure as detailed in his presentation at the last Astrophotography meeting on November $23^{\text {rd }}$.

LOOKING UP

Stargazing events are notoriously subject to the vagaries of the weather and are necessarily scheduled at short notice.

Please consult our website for updates: http://www.hermanusastronomy.co.za

THE ORION NEBULA M42, NGC 1976

Description	Bright nebula	Visibility on December $8^{\text {th }} 2023$			
Constellation	Orion				
Distance	$1400 \mathrm{ly}, 430 \mathrm{pc}$	Rises	Transits		Sets
Magnitude	+4.0	18h41	01h02		07h19
Apparent size	85.0×60.0 arcmin				
Actual size	$34.7 \mathrm{ly}, 10.6 \mathrm{pc}$	Naked Eye		Yes	
J2000 Dec/RA	$-5^{\circ} 23,28^{\prime \prime} / 5 \mathrm{~h} \mathrm{35m} \mathrm{17s}$	Binoculars		Yes	
Alt/Az	+390 $3^{\prime} 33^{\prime \prime} / 065^{\circ} 17^{\prime} 52^{\prime \prime}$	Telescopes		Yes	

Description

The Orion Nebula, catalogued as Messier 42 or NGC 1976, is one of the nearest star-forming regions to Earth.

Observation

As one of the brightest nebulae in the sky, it is rewarding in telescopes of every size and is perhaps the most studied and photographed deep sky object. M 42 is visible to the naked eye as a hazy patch surrounding Theta Orionis, the middle star in the Sword of Orion, just south of Orion's Belt.

Discovery and History

The Mayans of Central America had a folk tale which suggests that they knew of the Orion Nebula. But despite being visible to the naked eye, the Nebula is not mentioned in any known historical records before the invention of the telescope. Neither Ptolemy nor Al Sufi noted the nebula, even though they both listed patches of nebulosity elsewhere in the night sky. Around 130 AD, Ptolemy catalogued the brightest stars within the nebula as one bright star, as did Tycho Brahe in the late 16th century, and Johann Bayer in 1603, who designated them Theta Orionis (θ Ori).
In 1610, Galileo detected a number of faint stars when he first looked at this region with his telescope, but he curiously failed to note the nebula as well. Later, in 1617, Galileo took a closer look at the star, $\boldsymbol{\theta}$ Ori, and found it to be a triple, (a remarkable achievement considering his equipment. It is now listed as a double) but again he failed to perceive the nebula. This has led to speculation that its illuminating stars have flared up since that time, increasing the nebula's brightness.

The discovery of the Orion Nebula is generally credited to Nicholas-Claude Fabri de Peiresc, a French lawyer who turned his telescope to this part of the sky in 1610. His sighting, however, was only reported in his own personal documents and never published. The nebula was found independently in $\mathbf{1 6 1 1}$ by the Jesuit astronomer Johann Baptist Cysatus of Lucerne. He was the first to publish note of it, comparing it to a comet he had observed in 1618. The first known drawing of the Orion nebula was created by Giovanni Batista Hodierna.
All of these discoveries were apparently lost for some time. Eventually Christian Huygens, whose sketch was the first to be published, was credited for its rediscovery in $\mathbf{1 6 5 6}$ - both by Edmond Halley, who included it in his list of six nebulae in 1716, and by Charles Messier, who added it as the 42 nd object to his catalog.

Charles Messier first noted the nebula in 1769, along with three of its central stars. The nebula's smaller north-eastern portion, previously reported as a separate object by Jean-Jacques d'Ortous de Mairan in 1731, was also added by Messier as number 43 . Messier 42 and 43 were the first deep sky objects observed by William Herschel, who in 1789 described them as "an unformed fiery mist, the chaotic material of future suns."

The Orion Nebula's gaseous nature was revealed in 1865, with spectroscopy done by William Huggins. In 1880, Henry Draper took the first photograph of the Orion Nebula with an 11-inch refractor, marking the first historical instance of deep-sky astrophotography.

Amateur Observation

It is very easy to find the Orion Nebula. M 42 is visible to the naked eye under good conditions as a faint nebulosity surrounding Theta Orionis, the middle star in the sword of Orion. Theta Orionis is an extremely wide (135") binocular double, whose western component, $\boldsymbol{\theta 1}$ Ori, is the famous Trapezium multiple star. It is a large object, extending over 1 degree in diameter, and covers more than four times the area of the full moon.

Messier 43 is a bright nebulous arc to the north, detached from the main body of M 42 by a dark lane. This dark nebula extends well into M 42, forming a feature nicknamed the "Fish's Mouth". The bright regions to both sides are called the "wings". The wing extension to the southeast is called "The Sword"; the bright nebulosity below the Trapezium "The Thrust"; and the fainter western extension "The Sail".

The Orion Nebula contains a very young open cluster, at the end of the Fish's Mouth, known as the Trapezium cluster due to the asterism formed by its four primary stars. Two of these can be resolved into their component binary systems on nights with good seeing, giving a total of six stars.

In the neighbourhood to the north, there are also fainter reflection nebulae, partially reflecting the light of the Great Nebula. They were not noted by Charles Messier, but were later labelled NGC 1973, 1975 and 1977.

The Orion Nebula is also one of the easiest and most rewarding targets for amateur astrophotographers. Regions of red and areas of blue-violet are apparent in long-exposure photographs. The red hue is emitted by ionized hydrogen, particularly $\mathrm{H}-\alpha$ emission at a wavelength of 656.3 nm . The blue-violet coloration is light reflected by fine interstellar dust grains from the massive O-class stars at the core of the nebula.

Visual observers have long noted a distinctive greenish tint to the nebula. This greenish appearance was a puzzle for astronomers in the early part of the 20th century but is now known to be caused by radiation from doubly ionized oxygen.

Properties and Evolution

M42 is located at a distance of 1350 light years, with an uncertainty of about 2%, and is estimated to be 24 light years across.

But the Orion Nebula is just a small illuminated blister on the surface of a much larger cloud of gas and dust that extends over 10 degrees, covering half of the constellation Orion. This much larger nebula is known as the Orion Molecular Complex (OMC 1); we happen to see this structure approximately face-on. The Orion Molecular Cloud extends several hundreds of light-years, and includes Barnard's Loop, the Horsehead Nebula, the Flame Nebula, and the reflection nebula M 78.

The youngest and brightest stars we now see in the Orion Nebula are thought to be less than 100000 years old. Some of these newborn stars are particularly massive and emit large quantities of ionizing ultraviolet radiation. The ultraviolet light of these hot stars causes the nebula to glow by fluorescence.
The Trapezium multiple star complex is among the most recent products of star formation in the Orion Nebula. This small group of class O and B stars is also responsible for most of the ultraviolet radiation that ionizes the nebula. Two million years ago, this cluster may have been the home of the "runaway stars" AE Aurigae, 53 Arietis, and Mu Columbae, all currently moving away from the nebula at velocities greater than $100 \mathrm{~km} / \mathrm{s}$.

Altogether the Orion Nebula contains about 700 stars in various stages of formation. Many of the faint stars around the Trapezium are so young that they are still radiating energy from gravitational contraction and have not yet settled down as stable main sequence stars. Other studies of the Nebula have revealed the presence of about 150 protoplanetary disks, supporting the view that these objects are common around infant stars.

Stellar winds emitted by newly formed stars creates shock waves when it encounters the gas in the nebula. This complex and turbulent motion shapes the gas clouds, leading to gravitational collapse, and triggering additional star formation. Eventually, most of the Orion Nebula's gas and dust will be ejected. The remaining stars will form an open cluster, which gradually disperse under the gravitational influence of other stars as it travels around the galaxy. The Pleiades are a famous example of such a cluster.

Please keep in touch...

Have a look at our excellent website, edited by Derek Duckitt.
http://www.hermanusastronomy.co.za/
Contact ASSA - Get in touch with officers of the Society - we're real people with a passion for astronomy, so contact us and let's talk!

You can find us on Facebook, Twitter, the
ASSA Info mailing list and the ASSA Discussion
mailing list.

ASSA website http://assa.saao.ac.za
ASSA Deep-Sky Section
Whatsappchat group: [0741007237]
MNASSAhttp://assa.saao.ac.za/about/publications/mnas
sa/
Nightfall https://assa.saao.ac.za/?s=Nightfall
Official Big 5 of the African Sky web page
Official Big 5 Facebook group
ASSA Deep-Sky Section mailing list

Edited by Peter Harvey - petermh@hermanus.co.za

Grateful thanks to the following:
Derek Duckitt
Sky Guide Southern Africa 2023
Sky Safari
Stellarium
Wikipedia

