

1. SKY CHARTS

EVENING SKY 31st JANUARY at 22h00 (NORTH DOWN)

EVENING SKY 31st JANUARY at 22h00 (SOUTH DOWN)

2. THE SOLAR SYSTEM

PLEASE NOTE: All events predicted are as observed from Hermanus, Western Cape, South Africa. Times are South African Standard Time (UTC +2).

HIGHLIGHTS FROM THE SKY GUIDE - January 2022

Date	Time	Item
2	01h01	Moon at perigee (358 036 km)
	15h35	Moon southernmost (-26.3 [°])
	20h33	New Moon
3		Moon near Pluto
4	08h55	Earth at perihelion (0.983 au, 147 054 707 km)
		Moon (6%) near Mercury and Saturn after sunset
6		Moon (21%) near Jupiter after sunset
7		Moon (30%) near Neptune
		Mercury at eastern elongation (19º)
8	00h51	Moon crosses equator northbound
		Callisto at maximum from Jupiter
9	20h11	First quarter Moon
	02h48	Venus at inferior conjunction
11		Moon passes 1.2° south of Uranus
		Mercury crosses the ecliptic
14	03h03	Mercury stationary
	11h29	Moon at apogee (405 804 km)
16	01h13	Mercury at perihelion (0.308 au, 46 076 144 km)
		Pluto at conjunction
	12h18	Moon northernmost (+26.3 [°])
17		Moon (98%) near Pollux
18	01h48	Full Moon (398 km,, 30.0')
	21h52	Uranus stationary
20	21h57	Moon rises 25 mins and 6.4 ^o after Regulus
23	07h47	Venus at perihelion (0.718 au, 107 411 273 km)
	12h28	Mercury at inferior conjunction
	16h32	Moon crosses equator southbound
	23h25	Moon (68%) rises 12.6º north of Spica
25	15h41	Last quarter Moon
26		Mercury northernmost
29	09h59	Venus stationary
30	09h10	Moon at perigee (362 249 km)
	01h23	Moon southernmost (-26.4 ^o)

	JANUARY 2022		1st January	1st February	Visibility
Sun		Rises:	05h34	06h04	Never look at the
Length of	Sagittarius to Capricornus	Transit:	12h47	12h57	SUN Without
day	14.25 (0 151140	Sets:	19h59	19h49	PROTECTION!
Mercury	Sagittarius	Rises:	06h56	04h49	Farly lan after
Magnitude	-0.7 to +1.01	Transit:	14h04	11h42	sunset. Late Jan
Diameter	9"	Sets:	21h12	18h35	before sunrise
Venus	Sagittarius	Rises:	06h42	03h56	Farly Jan after
Magnitude	-4.3 to -4.6	Transit:	13h35	10h22	sunset. Late Jan
Diameter	61" to 49"	Sets:	20h30	17h35	before sunrise
Mars	Sagittarius	Rises:	03h38	03h09	
Magnitude	+1.5 to +1.4	Transit:	10h47	10h22	Before sunrise
Diameter	4"	Sets:	17h56	17h35	
Jupiter Magnitude	Aquarius -2.1 to -2.0 35" to 34"	Rises:	09h35	08h05	
		Transit:	16h11	14h34	Early evening
Diameter	00 10 04	Sets:	22h46	21h03	
Saturn	Capricornus	Rises:	08h04	06h19	
Magnitude	+0.7 15"	Transit:	14h57	13h10	After sunset
Blamotor		Sets:	21h50	20h00	
Uranus	Aries	Rises:	15h12	13h10	
Magnitude	+5.8 4"	Transit:	20h32	18h30	Evening
Diameter	т 	Sets:	01h57	23h51	
Neptune Magnitude Diameter	Aquarius	Rises:	11h11	09h13	
	+7.9 2"	Transit:	17h26	15h26	Evening
		Sets:	23h40	21h40	
Pluto	Sagittarius	Rises:	06h43	04h46	
wagnitude	+14.4	Transit:	13h52	11h54	Before sunrise
		Sets:	21h00	19h02	

Phase: In a telescope, the inner planets (Mercury, Venus and Mars) appear to us in phases, depending on the angle of the Sun's illumination, as does the Moon. The **angular diameter** is given in arc seconds ("). This is the apparent size of the object as we see it from Earth.

Magnitude: we are accustomed to hearing stars described in terms of 'magnitude'. For example the planet Jupiter at magnitude -1.8 is considerably brighter than the star Antares (in Scorpius) at +1.05. The scale is 'inverse'; the brighter the object, the lower the number. A 'good' human eye on a clear night can see down to a magnitude of about +6.

Transit: When an object crosses the **local meridian** it is said to **'transit'**. The local meridian is an imaginary line from the horizon directly north passing overhead (through *zenith*, see charts on page 1) to the horizon directly south.

Clavius Crater (SGAS Lunar Highlight)

Location: The north down image to right was taken from earth with the moon waxing gibbous and the crater on the terminator.

Coordinates: 58.4°S 14.4°W (please see below for the *The Selenographic Coordinate System*)

Diameter: 231 km. Depth 3.5 km.

Clavius is one of the largest crater formations on the Moon and the second largest crater on the visible near side (very close in size to <u>Deslandres</u>). It is located in the rugged southern highlands of the Moon, to the south of the prominent ray crater <u>Tycho</u>. It is named for the Jesuit priest <u>Christopher Clavius</u>.

Description

Clavius' location toward the southern limb of the Moon causes it to appear oblong due to foreshortening. Its great size makes it visible to the unaided eye as a prominent notch in the terminator about one to two days after the Moon reaches first quarter.

Clavius is one of the older formations on the lunar surface and was likely formed during the <u>Nectarian period</u> about four billion years ago. Despite its age the crater is relatively well-preserved.

It has a low outer wall in comparison to its size and is heavily worn and pock-marked by craterlets. The rim does not significantly overlook the surrounding terrain making it a "walled depression". The inner surface of the rim is hilly, notched and varies in width with the steepest portion to the south. The rim has been observed to have a somewhat polygonal outline overall.

The floor of Clavius forms a convex plain that is marked by some interesting crater impacts. The most notable of these is a curving chain of craters that begins with Rutherfurd in the south then arcs

across the floor in an anticlockwise direction forming a sequence of ever diminishing diameters. From largest to smallest, these craters are designated Clavius D, C, N, J, and JA. This sequence of diminishing craters has proved a useful tool for amateur astronomers who want to test the resolution of their small telescopes.

The crater floor retains a remnant of a central massif, which lies between Clavius C and N. The relative smoothness of the floor and the low size of the central peaks may indicate that the crater surface was formed some time after the original impact.

Presence of water

In October 2020, NASA confirmed the existence of molecular water near Clavius, at concentrations of up to 412 parts per million. Several ways have been suggested. The water could be trapped into tiny beadlike structures in the soil that form out of the high heat created by micrometeorite impacts.

The water might also be sheltered between lunar soil grains. Another possibility is from very small asteroid strikes, such as a rubble pile from a much more massive "parent" asteroid collision. Pulled apart in its descent to the lunar surface similar to Comet Shoemaker–Levy 9, and hitting the surface in a modest dispersal area with a small mass at low, oblique impact angle and bouncing could allow some water to remain in the lithic matrix. The carbonaceous chondrite class is often water-rich, and th he CI sub group are as much as 22% water. the CI sub group are as much as 22% water.

HERMANUS MOON RISE AND SET TIMES FOR JANUARY 2022

Date	day	rise	set	Date	day	rise	set	Date	day	rise	set
01-Jan	Sat	03h56	18h51	13-Jan	Thu	16h33	01h57	25-Jan	Tue		12h59
02-Jan	Sun	04h54	20h00	14-Jan	Fri	17h31	02h32	26-Jan	Wed	00h24	14h07
03-Jan	Mon	06h02	21h01	15-Jan	Sat	18h26	03h12	27-Jan	Thu	01h01	15h17
04-Jan	Tue	07h14	21h51	16-Jan	Sun	19h19	03h59	28-Jan	Fri	01h44	16h29
05-Jan	Wed	08h26	22h32	17-Jan	Mon	20h06	04h51	29-Jan	Sat	03h36	17h39
06-Jan	Thu	09h36	23h07	18-Jan	Tue	20h48	05h47	30-Jan	Sun	03h38	18h42
07-Jan	Fri	10h41	23h37	19-Jan	Wed	21h25	06h47	31-Jan	Mon	04h46	19h37
08-Jan	Sat	11h43		20-Jan	Thu	21h58	07h48	01-Feb	Tue	05h59	20h23
09-Jan	Sun	12h42	00h04	21-Jan	Fri	22h27	08h50	02-Feb	Wed	07h11	21h01
10-Jan	Mon	13h40	00h31	22-Jan	Sat	22h55	09h51	03-Feb	Thu	08h20	21h33
11-Jan	Tue	14h38	00h58	23-Jan	Sun	23h40	10h52	04-Feb	Fri	09h26	22h03
12-Jan	Wed	15h36	01h26	24-Jan	Mon	23h53	11h55	05-Feb	Sat	10h29	22h30

METEOR SHOWERS

	Maximum Date/Time	Observing Prospects	Duration	Radiant	ZHR*	Velocity Km/sec
Crucids	19 January 00h00 to 03h30	19 January poor with 99% Moon	6 – 28 Jan	The Coalsack in Crux	<5	50

*A word of caution on predicted Zenithal Hourly Rate (ZHR):

A meteor shower's activity is gauged by its zenithal hourly rate. This value is often quoted in the press and astronomy publications and has sometimes been the source of misunderstanding and disappointment. ZHR is an ideal value; it is by definition the number of meteors a single observer could possibly see during a shower's peak with the radiant directly overhead on a clear, dark night. Most observers, however, will not see as many meteors as the ZHR suggests.

For more details regarding meteor watching, please see SGAS 2022, pages 86-87.

3. LOOKING OUT

SUGGESTED EVENING OBSERVATION WINDOWS

(Lunar observations notwithstanding)

Date		Moon		
24th December	Rises	23h55 (79%)	21h42	
5th January	Sets	22h32 (12%)	21h42	
24 rd January	Rises	23h47 (61%)	21h32	
4 th February	Sets	22h07 (11%)	21h21	

CLUB STARGAZING – Sadly, with the continuance of the pandemic, we still cannot enjoy physical club gatherings. Of course that should not stop our intrepid members digging out a good coat and indulging in stargazing from home or favourite darkest and cloudless spots.

And don't forget the **Moon**, our closest celestial neighbour.

Please consult our website for updates: <u>http://www.hermanusastronomy.co.za</u>

Tarantula Nebula 30 Doradus, C103

The following details are applicable to **31st January 2022** at **22h00**

Description	Bright nebula	Visibility on 31 st January 2022		
Constellation	Dorado			
Distance	160kly, 48 kpc	Rises	Transits	Sets
Magnitude	+8.2	Does not rise	21h38	Does not set
Apparent size	40 x 25 arcmin			
Actual size	1833 ly, 562 pc	Naked Eye	n	0
Alt/Az	+55º12'02" / 183º28'52"	Binoculars	Ye	es
J2000 lat/long	-69º05'00" / 5h38'36"	Telescopes	Ye	es

The photo (right) was taken and processed by HAC member Pete Scully:

16th January, 2020; reprocessed 1st April, 2021. Pre and post processing – Affinity Photo + Macros 15 x 35s lights – 10 darks – 10 bias EOS 1100d modded – 100 mm refractor HEQ5 – Stellarium - APT

Discovery

The **Tarantula Nebula** was observed by <u>Nicolas-Louis de Lacaille</u> during his expedition to the Cape of Good Hope between 1751 and 1753. Originally thought to be a star, its nebular nature was recognized by Lacaille. The names "Great Looped Nebula" (from John Herschel) and "True Lovers' Knot" are also used. The name "Tarantula" arose in the mid 20th century from its appearance in deep photographic exposures.

Johann Bode included the Tarantula in his 1801 *Uranographia* star atlas and listed it in the accompanying *Allgemeine Beschreibung und Nachweisung der Gestirne* catalogue as number 30 in the constellation "Xiphias or Dorado" (hence 30 Doradus). Instead of being given a stellar magnitude, it was noted to be nebulous.

Description

The Tarantula Nebula, an H II region in the Large Magellanic Cloud, lies at the eastern end of the LMC's stellar bar in our summer months. It is the largest and brightest emission nebula in the LMC galaxy and one of the largest emission nebulae known. Considering its distance of about 160 000 light years, it is so bright that, if it were as close to Earth as the Orion Nebula, the Tarantula Nebula would cast shadows.

Within the nebula is <u>NGC 2070</u>, a large <u>open cluster</u> and candidate <u>super</u> <u>star cluster</u> forming the heart of the bright region. **30 Doradus** has often been treated as the designation of a star or of the central star cluster NGC 2070 but is now generally treated as referring to the whole nebular area of the Tarantula Nebula.

The nebula resides on the leading edge of the Large Magellanic Cloud, where the compression of the interstellar medium likely results in a very active star formation region. In fact, it is the most active starburst region known in the Local Group of galaxies. Although the Tarantula is roughly 100 times larger than the famous Orion Nebula, it is illuminated in the same way: by the ultraviolet radiation from a collection of hot, young, massive stars embedded within it. Several OB associations have been observed inside the Tarantula. At its core lies the extremely compact cluster of stars R136a, which is a hotbed of Wolf-Rayet stars, and produces most of the energy that makes the nebula visible.

Supernova 1987A occurred in the outskirts of the Tarantula Nebula. This was the closest supernova since the invention of the telescope and a harbinger of what lies in store for many of the Nebula's stars.

Please keep in touch...

Have a look at our excellent website, edited by Derek Duckitt.

http://www.hermanusastronomy.co.za/

Contact ASSA - Get in touch with officers of the Society - we're real people with a passion for astronomy, <u>so contact us and let's talk</u>!

You can find us on <u>Facebook</u>, <u>Twitter</u>, the <u>ASSAInfo mailing list</u> and the <u>ASSADiscussion</u> <u>mailing list</u>. ASSA website <u>http://assa.saao.ac.za</u> <u>ASSA Deep-Sky Section</u> <u>Whatsappchat</u> group: [074 100 7237] <u>MNASSAhttp://assa.saao.ac.za/about/publications/ mnassa/ Nightfall https://assa.saao.ac.za/?s=Nightfall Official Big 5 of the African Sky web page Official Big 5 Facebook group <u>ASSA Deep-Sky Section mailing list</u></u> Grateful thanks to the following:

ASSA Johan Retief Pete Scully Sky Guide Africa South 2022 Sky Safari Stellarium Wikipedia

Edited by Peter Harvey - <u>petermh@hermanus.co.za</u> -

Tel: +27 (0) 81 212 9481