

HERMANUS A4:24:25:2: 19:14:01.1

1. SKY CHARTS

EVENING SKY 9th JANUARY at 22h00 (NORTH DOWN)

EVENING SKY 9th JANUARY at 22h00 (SOUTH DOWN)

PLEASE NOTE: All events predicted are as observed from Hermanus, Western Cape, South Africa. Times are South African Standard Time (UTC +2). *Also please note*: with the exception of Pluto (magnitude +14.4), all events predicted are visible with the naked eye.

2. THE SOLAR SYSTEM

HIGHLIGHTS FROM THE SKY GUIDE

Date	Time	Item
1		Moon near the Beehive (M44)
2	23h58	Moon passes 4.9° north of Regulus
	15h59	Earth at perihelion (0.9833 AU)
6	11h37	Last quarter Moon
8		Venus near Trifid Nebula (M20)
9	17h40	Moon at perigee (367 389 Km)
		Venus near Lagoon Nebula (M8)
10	04h08	Moon passes 6.2° east of Antares
	06h51	Mercury passes 1.6 ^o south of Saturn
		Venus near Lagoon Nebula (M8)
11		Moon near Venus
	20h08	Mercury near Jupiter
12	10h18	Moon southernmost (-24.9 ^o)
13	07h00	New Moon
		Moon near Saturn
14		Moon near Mercury and Jupiter
		Uranus stationary
		Pluto at conjunction
19		α Crucids at maximum (see Meteor Showers, page 4)
20	23h02	First quarter Moon
	20h31	Lunar-X visible ¹
		Mars near Uranus
21		Moon near Mars
	15h12	Moon at apogee (404 360 Km)
24		Moon near Aldebaran
	03h59	Mercury at maximum eastern elongation (18.6 [°])
	04h26	Saturn at conjunction
26	17h39	Moon northernmost (+24.9°)
27	17h46	Moon near Pollux
28	21h16	Full Moon (381 530 KM, diameter 31.3')
	16h50	Moon near the Beehive cluster (M44)
29	02h51	Jupiter at conjunction
30	06h55	Moon near Regulus
		Mercury stationary

¹ Lunar-X commences 20h31 on 20th January.

(for more details, please see page 4 ...)

	JANUARY 2021		1st January	1st February	Visibility
0		Rises:	08h26	06h04	Never look at the sun without SUITABLE
Sun Lenath of	Sagittarius to Capricornus	Transit:	12h14	12h57	
day	14h24 to 13h45	Sets:	16h02	19h49	EYE PROTECTION!
Mercury	Sagittarius to Capricornus	Rises:	09h39	07h15	Low in west after
Magnitude Phase	-0.7 to +1.2 77% to 17%	Transit:	13h31	13h46	
Diameter	6" to 9"	Sets:	17h24	20h17	ouniou.
Venus	Sagittarius -4.3 to -3.9 2% to 98%	Rises:	0847	05h00	The morning star
Phase		Transit:	13h03	12h04	
Diameter	61" to 10"	Sets:	17h19	19h08	
Mars	Pisces to Aries	Rises:	14h08	13h20	
Phase	-0.2 to +0.5	Transit:	19h38	18h35	Evening
Diameter	10" to 8"	Sets:	01h11	23h49	
Jupiter	Capricornus -2.0 33" to 32"	Rises:	07h19	05h52	Low in west after sunset then too
Magnitude Diameter		Transit:	14h19	12h47	
Blamotor		Sets:	21h19	19h41	close to the Sun
Saturn	Capricornus	Rises:	07h13	05h29	l ow in west after
Diameter	+0.6 15"	Transit:	14h14	12h27	sunset then too close to the Sun
		Sets:	21h14	19h24	
Uranus	Aries	Rises:	14h51	12h49	Evening
Diameter	+5.7 to +5.8 4"	Transit:	20h15	18h13	
		Sets:	01h44	23h38	
Neptune	Aquarius +7.9 2"	Rises:	10h59	09h01	
Diameter		Transit:	17h16	15h17	Evening
		Sets:	23h33	21h34	
Pluto	Sagittarius	Rises:	06h35	04h38	Low in west after sunset then low
Magnitude	+14.4	Transit:	13h43	11h45	
		Sets:	20h51	18h53	sunrise

Phase: In a telescope, the inner planets (Mercury, Venus and Mars) appear to us in phases, depending on the angle of the Sun's illumination, as does the Moon. The **angular diameter** is given in arc seconds ("). This is the apparent size of the object as we see it from Earth.

Magnitude: we are accustomed to hearing stars described in terms of 'magnitude'. For example the planet Jupiter at magnitude -1.8 is considerably brighter than the star Antares (in Scorpius) at +1.05. The scale is 'inverse'; the brighter the object, the lower the number. A 'good' human eye on a clear night can see down to a magnitude of about +6.

Transit: When an object crosses the **local meridian** it is said to **'transit'**. The local meridian is an imaginary line from the horizon directly north passing overhead (through *zenith*, see charts on page 1) to the horizon directly south.

THE MOON

The Selenographic Coordinate System

(from Wikipedia)

Selenographic coordinates are used to refer to locations on the surface of Earth's moon.

Any position on the lunar surface can be referenced by specifying two numerical values, which are comparable to the **latitude** and **longitude** of Earth. The latitude gives the position north or south of the lunar equator. The longitude gives the position east or west of the Moon's prime meridian, which is the line passing from the lunar north pole through the point on the lunar surface directly

facing Earth to the lunar south pole. This can be thought of as the midpoint of the visible Moon as seen from the Earth. Both of these coordinates are given in degrees.

Astronomers defined the fundamental location in the selenographic coordinate system by the small, bowl-shaped satellite crater 'Mösting A'. The coordinates of this crater are defined as:

South 3° 12' 43.2" West 5° 12' 39.6"

The coordinate system has become precisely defined due to the *Lunar Laser Ranging Experiment.*

Anything past 90°E or 90°W would not be seen from Earth, except for **libration**, which makes 59% of the Moon visible.

3. LOOKING UP

Lunar and Solar eclipses : None predicted for this month

METEOR SHOWERS

Name	Date & Time of Max	Duration	Radiant	Zenithal hourly rate	velocity Km/sec	Observing Prospect
α Crucids	19 th January 00h00 to 03h30	6 th to 28 th January	The Coalsack in Crux	< 5	50	Good moonset 23h54

For more details regarding meteor watching, please see the Sky Guide Africa South (SGAS), pages 86-87.

SUGGESTED OBSERVATION SCHEDULE for JANUARY

(Lunar observations notwithstanding)

Date	dusk end		
3 th	21h43		
15 th	21h39		

moonrise moonset

23h21 (81%) 21h58 (5%)

CLUB STARGAZING - sadly, we have had to reimpose our policy of no gatherings owing to the resurgence of the pandemic.

> Please consult our website for updates: http://www.hermanusastronomy.co.za.

DEEP SKY HIGHLIGHTS

THE HORSEHEAD NEBULA **Barnard 33**

Descr	notion
0000	101011

Constellation

Apparent size

J2000 lat/long

Actual size

Alt/Azimuth

Distance

Barnard 33 - small dark nebula (silhouetted against IC 434, a bright emission nebula) Orion Horsehead 1600 ly, 500 pc Visual magnitude Unknown 6 x 4 arcmin 2.8 ly, 0.9 pc +54° 27' 30" / 029° 37' 45" -02º 15' 33" / 5h 41' 38"

Visibility on 9th January :

Rise	Transit	Set
16h58	23h07	05h19

Naked eye: no Binoculars: difficult Telescopes: Yes but challenging (see below)

Observing

The Horsehead Nebula, known also as Barnard 33, is a small dark nebula silhouetted against the glow of the emission nebula IC 434. Only by chance does the dark nebula resemble a horse's head but its coincidental appearance has led to its becoming a much photographed object.

This narrow patch of nebulosity extends a degree south of the bright star **Alnitak** (ζ Ori), the south-easternmost star in Orion's belt. Amateur astronomers often use this nebula as a test of observing skills as it requires dark skies and excellent transparency. It is best seen in long-exposure photographs as a dark 4' x 6' notch against the 60' strip of faint nebulosity that is IC 434.

The Horsehead is part of a huge region of dark dust and gas made observable by its superimposition against the background of the relatively bright nebula. The red glow of IC 434 originates from ionized hydrogen gas. The bright, bluish reflection nebula near B33 is NGC 2023.

The underside of the "neck" of the Horsehead is especially dark and actually casts a shadow on the field below the "muzzle". The entire region is illuminated by the bright OB star σ Orionis (top left in the image on page 5) which is also responsible for ionizing the emission nebula IC434.

The marked change in star density on the north-eastern side of IC 434 indicates that this strip of glowing hydrogen marks the edge of a substantial dark cloud. As a cloud core emerging from its parent, and as an active site of low-mass star formation, B33 is in an active, complex and fascinating neighbourhood. The 'streamers' visible in the brighter region appear to be out-flowing matter funnelled by a strong magnetic field. Small red spots in the Horsehead's base are protostars in the process of forming.

The bright **Alnitak** (distance 817 ly, magnitude +1.85) is a foreground star and not related.

Discovery and History

Although **William Henry Pickering** was officially credited with its discovery in 1889, the Horsehead Nebula was first recorded on a photographic plate taken by **Williamina Paton Fleming** at the Harvard College Observatory in 1888. The first published description of the nebula was given by **E. Barnard** in 1913 and was first catalogued by him in 1919.

... from page 2

The **Lunar X** (also known as the **Werner X**) is a clair-obscur effect in which light and shadow creates the appearance of a letter 'X' on the rims of the craters Blanchinus, La Caille and Purbach.

Luna X is a striking feature and can be viewed even with binoculars.

Luna location: lat. -25.8°, long +1.1°

Lunar X (Werner X) (25° south, 1° east)

The best known clair-obscur effect which produces a well defined letter 'X' due to partial lighting of the rims craters **La Caille**, **Purbach** and **Blanchinus.**

Best seen on the Moon's Morning Terminator at first quarter:

Wednesday 20th January commencing 20h31.

Also visible this year during darkness:

21 Mar, 19 May, 17 Jul, 14 Sep and 12 Nov.

Other lunar clair-obscur effects are illustrated to right and will be discussed in the later months of this year.

keep in touch...

Please have a look at our excellent website, edited by Derek Duckitt. http://www.hermanusastronomy.co.za/

Also...

ASSA website http://assa.saao.ac.za ASSA Deep-Sky Section Whatsappchat group: [074 100 7237] MNASSAhttp://assa.saao.ac.za/about/publications/mnassa/ Nightfall https://assa.saao.ac.za/?s=Nightfall Official Big 5 of the African Sky web page Official Big 5 Facebook group ASSA Deep-Sky Section mailing list

Contact ASSA

Get in touch with officers of the Society - we're real people with a passion for astronomy, <u>so contact us and let's talk</u>! You can find us on Facebook, Twitter, the ASSAInfo mailing list and the ASSADiscussion mailing list.

Grateful thanks to the following:

ASSA Sky Guide Africa South 2020 Sky Safari Stellarium Telescopius <u>https://telescopius.com/</u>

Edited by Peter Harvey e-mail: <u>petermh@hermanus.co.za</u> Tel: 081 212 9481