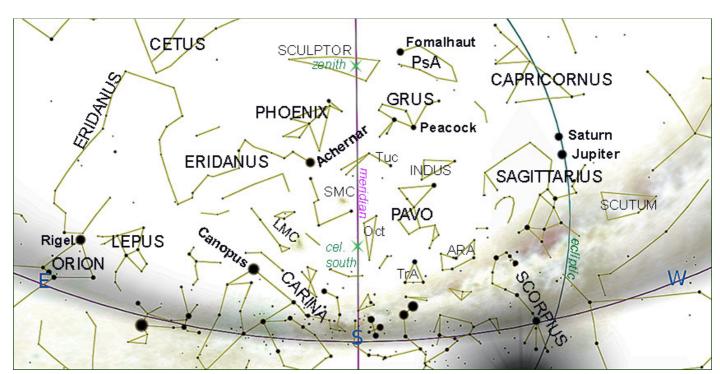


NOVEMBER 2020



1. SKY CHARTS

EVENING SKY 12th NOVEMBER at 21h00 (NORTH DOWN)

EVENING SKY 12th NOVEMBER at 21h00 (SOUTH DOWN)

PLEASE NOTE: All events predicted are as observed from Hermanus, Western Cape, South Africa. Times are South African Standard Time (UTC +2). Also please note: with the exception of Pluto (magnitude +14.4), all events predicted are visible with the naked eye.

2. THE SOLAR SYSTEM

Date	Time	Item		
2		Mercury at perihelion *		
3		Mercury stationary		
		Moon near Aldebaran		
5	21h30	Moon furthest north (+24.8°)		
6	20h12	Moon passes 3.5° south-east of Pollux		
7	22h06	Moon 2.7º north-west of the Beehive (M44)		
8	15h46	Last quarter Moon		
		Juno in conjunction with the Sun		
9		Moon near Regulus		
10	18h59	Mercury at greatest elongation (19.1º)		
12	23h32	Jupiter passes 0.7º south-west of Pluto		
		Mercury greatest latitude north		
13	01h04	Moon passes 3.5º north-west of Venus		
		Moon, Venus, Mercury and Spica grouped before sunrise		
14	13h48	Moon at perigee (357 800 Km)		
15	07h07	New Moon		
		Mars stationary		
16		Moon near Antares		
18	13h27	Moon furthest south (-24.9º)		
19		Moon, Jupiter, Saturn and Pluto grouped early morning		
21		Venus greatest latitude north		
22	06h45	First quarter Moon		
23		Moon near Neptune		
26	02h41	Moon passes 3.7º east of Mars		
27	19h45	Moon passes 2.8º south of Uranus		
	09h29	Moon at apogee (405 900 Km)		
29		Neptune stationary		
30	11h30	Full Moon		

* Mercury, a few facts

Mercury is named after the Greek god **Hermes** ($E\rho\mu\dot{\eta}\varsigma$), translated into the Latin **Mercurius**, god of commerce, messenger of the gods and mediator between gods and mortals.

It is the smallest and innermost planet in the Solar System with an orbit varying between $46,001,200 \, \text{km}$ (perihelion) and $69,816,900 \, \text{km}$ (aphelion, next 16^{th} December) and orbits the Sun in just 87.97 earth days, the shortest year of all the planets in the Solar System.

Its proximity to the Sun means the planet can only be seen near the western horizon after sunset or eastern horizon before sunrise. It may appear as a bright star-like object but is generally far more difficult to observe than Venus. The planet telescopically displays the complete range of phases, similar to Venus and the Moon, as it moves in its inner orbit relative to Earth which recurs over its synodic period of approximately 116 days.

Mercury rotates in a way that is unique in the Solar System. It is tidally locked with the Sun in a 3:2 spin-orbit resonance which means that, relative to the fixed stars, it rotates on its axis exactly three times for every two revolutions it makes around the Sun. As seen from the Sun, in a frame of reference that rotates with the orbital motion, it appears to rotate only once every two Mercurian years. An observer on Mercury would therefore see only one day every two Mercurian years.

Mercury's surface appears heavily cratered and is similar in appearance to the Moon's, indicating that it has been geologically inactive for billions of years.

NOVEMBER 2020			1st November	1st December	Visibility
0	Libra to Ophiuchus	Rises:	05h41	05h24	Never look at the sun
Sun Length of		Transit:	12h27	12h32	without SUITABLE
day	13h31 to 14h17	Sets:	19h12	19h41	EYE PROTECTION!
Mercury	Virgo to Libra +1.4 to -0.8 16% to 96% 9" to 5"	Rises:	05h11	04h50	low in the east before sunrise
Magnitude Phase		Transit:	11h38	11h49	
Diameter		Sets:	18h05	18h50	
Venus	Virgo to Libra -4.0 82% to 89% 13" to 12"	Rises:	04h16	06h59	
Magnitude Phase		Transit:	10h20	10h41	The morning star
Diameter		Sets:	16h25	17h24	
Mars	Pisces -2.1 to -1.1 98% to 92% 20" to 15"	Rises:	17h11	15h19	
Magnitude Phase		Transit:	22h59	21h02	Initially all night, latterly evening
Diameter		Sets:	04h52	02h49	latterry evening
Jupiter	Sagittarius -2.2 to -2.0 37" to 34"	Rises:	10h22	08h49	
Magnitude Diameter		Transit:	17h29	15h53	Evening
Biamotor		Sets:	00h40	22h57	
Saturn	Sagittarius +0.6 16"	Rises:	10h47	09h00	
Magnitude Diameter		Transit:	17h51	16h02	Evening
		Sets:	00h58	23h05	
Uranus Magnitude	Aries +5.7 4"	Rises:	18h59	16h56	
Diameter		Transit:	00h26	22h20	All night
		Sets:	05h49	03h48	
Neptune Magnitude Diameter	Aquarius +7.8 to +7.9 2"	Rises:	14h59	13h00	
		Transit:	21h16	19h17	Evening
		Sets:	03h37	01h38	
Pluto Magnitude	Cogittorius	Rises:	10h28	08h33	
	Sagittarius +14.4	Transit:	17h36	15h41	Evening
		Sets:	00h49	22h59	

Phase: In a telescope, the inner planets (Mercury, Venus and Mars) appear to us in phases, depending on the angle of the Sun's illumination, as does the Moon. The **angular diameter** is given in arc seconds ("). This is the apparent size of the object as we see it from Earth.

Magnitude: we are accustomed to hearing stars described in terms of 'magnitude'. For example, the planet Jupiter at magnitude -2.0 is considerably brighter than the star Antares (in Scorpius) at +1.05. The scale is 'inverse'; the brighter the object, the lower the number. A 'good' human eye on a clear night can see down to a magnitude of about +6.

Transit: When an object crosses the **local meridian** it is said to **'transit'**. The local meridian is an imaginary line from the horizon directly north passing overhead (through *zenith*, see charts on page 1) to the horizon directly south.

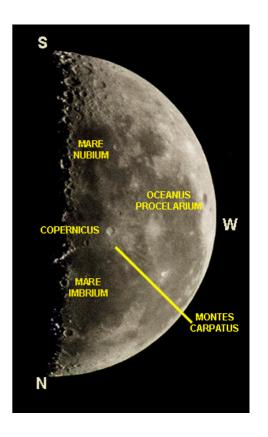
3

THE MOON

Montes Carpatus

Location: forms the southern edge of **Mare Imbrium** on the Moon. The selenographic coordinates of this range are 14.5°N, 24.4°W.

Best seen: two days after first quarter and one day after last quarter.


Description: This rugged range generally stretches from west to east. The western end begins in the vicinity of the crater T. Mayer, although a few low ridges curve northwards towards Euler crater. At the eastern extreme is a wide gap where Mare Imbrium in the north joins Mare Insularum to the south. Starting at the east side of this gap are the Montes Apenninus, another mountainous range that curves towards the northeast.

Most of the Carpatus range consists of a series of peaks and rises, separated by valleys that have been penetrated by lava flows. None of the peaks have received individual names. The surface to the north of the range is nearly level lunar mare, broken only by the occasional wrinkle ridge or minor impact crater. The region south of the range is somewhat rougher, although still covered by lava flows. About 100 kilometres south of the mountains is the well-known ray crater Copernicus and the irregular outer ramparts of this crater stretch almost to the foothills of the Carpatus range. Also of note is the smaller crater Gay-Lussac, which is attached to the southern part of the range.

Diameter: 361 km

Name: Johann Heinrich von Mädler after the Carpathian Mountains in

Central Europe.

Lunar and Solar eclipses: None predicted for this month

METEOR SHOWERS

Name	Date & Time of Max	Duration	Radiant	ZHR	velocity	Observing prospects
Southern Taurids	5 November 21h30 – 03h30	1 October – 25 November	15º west of Aldebaran	10	29	Good until midnight
Northern Taurids	12 November 21h30 – 03h30	1 October – 25 November	3º east of The Pleiades	5	31	Good
Leonids	17 November 03h00 – 04h00	12 - 21 November	3º north-west of Algieba (γ Leo)	5-10	70	Good
For more details regarding meteor			Guide to the table above	<u>:</u>		

For more details regarding meteor watching, please see the Sky Guide Africa South (SGAS), pages 86-87

ZHR – zenithal hourly rate vel. - velocity in km per second

3. LOOKING UP ...

SUGGESTED OBSERVATION SCHEDULE for **NOVEMBER** (Lunar observations notwithstanding)

Date	dusk end	moonrise	moonset
5 th	20h50	23h49 (86%)	
18 th	21h07	,	22h14 (6%)

STARGAZING . With regret, we have had to suspend all our stargazing functions owing to the current situation.

Please consult our website for updates: http://www.hermanusastronomy.co.za.

DEEP SKY HIGHLIGHTS

THE ANDROMEDA GALAXY M31, NGC 224

Description	Spiral galaxy	Visibility on 12 th November :			
Distance Visual magnitude Apparent size	2 500 Kly, 780 Kpc +3.4 178 x 70 arcmin	<i>Rise</i> 17h58	<i>Transit Set</i> 21h34 01h13		
Actual size Alt/Azimuth J2000 lat/long	131.3 Kly, 40.2 Kpc +13º 04' 17" / 11º 01' 02" 0h42m42s / +41º16'00"	Naked eye:	A faint smudge on moonless nights		
Location	Constellation Andromeda , from guide star Mirach , 7.7° to north-west	Binoculars Telescopes	Yes Yes		

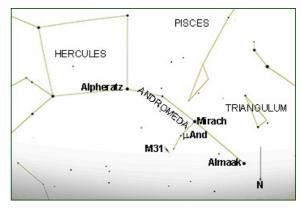
Discovery and History

The earliest known record of the Andromeda Galaxy was made in 964 CE by Persian astronomer **Abd al-Rahman al-Sufi**. He described it as "The Little Cloud" in his book of fixed stars. But it must have been known to Persian Astronomers at Isfahan as early as 905 AD. It also appeared on a Dutch star map in 1500.

The first telescopic description of M31 was given by **Simon Marius** in 1612 without claiming its discovery. Apparently unaware of al-Sufi's and Marius' observations, **Giovanni Batista Hodierna** independently rediscovered this object in 1654. **Edmond Halley**, in his 1716 treatise, credits the discovery of this 'nebula' to French astronomer **Ismail Bouillard**, who observed it in 1661.

In 1764, **Charles Messier** catalogued the object as number 31. Unaware of al-Sufi's earlier work, Messier incorrectly credited Marius with its discovery.

The "Great Andromeda Nebula" was long believed to be one of the nearest gaseous nebulae. In 1785, **William Herschel** wrote (incorrectly) that, based on its colour and magnitude, its distance "would not exceed 2000 times that of Sirius" – about 17 000 ly. **William Huggins**, the pioneer of spectroscopy, observed the spectrum of M31in 1864. The "nebula" displayed a star-like continuous spectrum, unlike the line spectra of gaseous nebulae.


Observing

Physical Properties

The Andromeda Galaxy was formed roughly 10 billion years ago from the collision and subsequent merger of smaller protogalaxies.

With an apparent magnitude of +3.4, the Andromeda Galaxy is one the brightest Messier objects. It is visible to the naked eye from areas of moderate light pollution and can even be seen from urban areas with binoculars.

Although the apparent size of the galaxy is about 3 x 1 degrees - six times the size of the full moon! - only the

bright central region is visible to the naked eye. M31 harbours a dense and compact nucleus at its centre, giving the visual impression of a star embedded in the more diffuse surrounding bulge.

Astrophotographers can gather the fine, faint detail in the spiral arms. M31 is classified as an "SA(s)b" spiral galaxy, with arms moderately wound up in a clockwise direction. Andromeda's galactic plane is oriented approximately 13º to our line of sight and is therefore seen nearly edge-on.

Like the Milky Way, the Andromeda galaxy has satellite galaxies. Charles Messier found the two brightest, M32 and M110, both visible in binoculars and conspicuous in small telescopes.

keep in touch...

Please have a look at our excellent website, edited by Derek Duckitt. http://www.hermanusastronomy.co.za/

Also...

ASSA website http://assa.saao.ac.za

ASSA Deep-Sky Section

Whatsappchat group: [074 100 7237]

MNASSAhttp://assa.saao.ac.za/about/publications/mnassa/

Nightfall https://assa.saao.ac.za/?s=Nightfall

Official Big 5 of the African Sky web page

Official Big 5 Facebook group

ASSA Deep-Sky Section mailing list

Contact ASSA

Get in touch with officers of the Society - we're real people with a passion for astronomy, so contact us and let's talk!

You can find us on Facebook, Twitter, the ASSAInfo mailing list and the ASSADiscussion mailing list.

Grateful thanks to the following:

ASSA Sky Guide Africa South 2020 Sky Safari Stellarium

Telescopius https://telescopius.com/

Edited by Peter Harvey

e-mail: petermh@hermanus.co.za

Tel: 081 212 9481