

2. HIGHLIGHTS FROM THE SKY GUIDE

PLEASE NOTE: All events predicted are as observed from Hermanus, Western Cape, South Africa. Times are South African Standard Time (UTC +2)

Date	Time	Item			
3		Pallas at conjunction			
4		Moon near Neptune			
	08h44	Luna-X feature forms			
	08h58	First quarter Moon			
6		December Phoenicid meteor shower at maximum			
7		Jupiter at southernmost declination for the year (-23.3°)			
8		Moon near Uranus			
11		Moon near Aldebaran			
		Venus near Saturn			
12	07h12	Full Moon			
13		Moon furthest north (+23.2°)			
		Venus near Pluto			
14		Moon near Pollux			
		Geminid meteor shower at maximum			
16		Mercury near Antares			
17		Moon near Regulus			
18	22h31	Moon at perigee			
19	06h57	Last quarter Moon			
20		Venus at greatest latitude south			
22		SOLSTICE			
23	04h17	Moon passes 4.1° east of Mars			
25		HAPPY CHRISTMAS			
		Moon near Mercury			
26	05h19	New Moon			
		Solar Eclipse (not visible in southern Africa) ¹			
		Moon near Jupiter			
27		Moon near Saturn			
	14h11	Moon near Saturn			
	18h05	Moon occults Pluto			
		Jupiter at conjunction			
29	03h30	Moon skims Venus			
30		Mercury at aphelion			

¹ Annular eclipse visible from Middle East, north and east Africa, Asia (except north and east Russia), north and west Australia, Micronesia and Solomon Islands. For further information please see <u>https://en.wikipedia.org/wiki/Solar_eclipse_of_December_26, 2019</u>

3. THE SOLAR SYSTEM

	DECEMBER 2019		1st December	1 st January	Visibility
Sun	Ophiuchus to Sagittarius	Rises:	05h24	05h34	Never look at the sun
Length of	13h29 to 14h16	Transit:	12h32	12h46	without SUITABLE EYE
day		Sets:	19h40	19h59	PROTECTION!
Mercury	Libra to Sagittarius	Rises:	04h26	05h06	Low in the west
Magnitude Phase	-0.6 to -0.9 69% to 99%	Transit:	11h13	12h23	after sunset becoming too close
Diameter	6" to 5"	Sets:	18h00	19h41	to the Sun
Venus	Sagittarius to Capricornus	Rises:	07h16	08h18	
Magnitude Phase	-3.9 to -4.0 89% to 82%	Transit:	14h33	15h13	Evening
Diameter	12" to 13"	Sets:	21h50	22h07	
Mars	Virgo to Libra	Rises:	03h46	02h48	
Magnitude Phase	+1.7 to +1.6 98% to 96%	Transit:	10h27	09h47	Morning
Diameter	4"	Sets:	17h07	16h46	
Jupiter	Sagittarius	Rises:	06h51	05h20	Evening
Magnitude	-1.8	Transit:	14h02	12h30	becoming too
Diameter	32"	Sets:	21h12	19h41	close to the Sun
Saturn	Sagittarius	Rises:	08h14	06h28	
Magnitude	+0.6 to +0.5	Transit:	15h21	13h33	Low in the west after sunset
Diameter	15"	Sets:	22h27	20h39	
Uranus	Aries	Rises:	16h39	14h34	
Magnitude	+5.7	Transit:	22h07	20h02	Evening
Diameter	4"	Sets:	03h39	01h35	
Neptune	Aquarius	Rises:	12h52	10h52	
Magnitude	+7.9	Transit:	19h12	17h11	Evening
Diameter	2"	Sets:	0135	23h30	
		Rises:	08h28	06h31	
Pluto	Sagittarius	Transit:	15h36	13h38	Low in the west after sunset
Magnitude	lagnitude +14.4		22h43	20h45	

Phase: In a telescope, the inner planets (Mercury, Venus and Mars) appear to us in phases, depending on the angle of the Sun's illumination, as does the Moon. The **angular diameter** is given in arc seconds ("). This is the apparent size of the object as we see it from Earth.

Magnitude: we are accustomed to hearing stars described in terms of 'magnitude', for example Antares (in Scorpius) at +1.05 and the planet Jupiter, at (for example) magnitude -1.8. The latter is considerably brighter than Antares as the scale is 'inverse'; the brighter the object, the lower the number. A 'good' human eye on a clear night can see down to a magnitude of about +6.

Transit: When an object crosses the local **meridian** it is said to **'transit'**. The local meridian is an imaginary line from the horizon directly north passing overhead (through *zenith*, see charts on page 1) to the horizon directly south.

THE MOON

GASSENDI

Type: a large lunar impact crater with three central mountains rising 1.2 km above the crater floor.

Diameter: 114 Km.

Notes: The crater has been inundated by lava during the formation of the mare, so only the rim and the multiple central peaks remain above the surface. The outer rim is worn and eroded, although it retains a generally circular form. A smaller crater – Gassendi A – intrudes into the northern rim, and joins a rough uplift at the northwest part of the floor. The crater pair bears a curious resemblance to a diamond ring. In the southern part of the crater floor is a semi-circular ridge-like formation that is concentric with the outer rim. It is in this southern part where the rim dips down to its lowest portion, and a gap appears at the most southern point. The rim varies in height from as little as 200 meters to as high as 2.5 Km above the surface. The floor has numerous hummocks and rough spots. There is also a system of rilles that criss-crosses the floor, named the Rimae Gassend.

Best seen: three days after first quarter and two days after last quarter.

Age: about 3.9 billion years Location: northern edge of mare Humorem S MARE HUMOREM Gassendi

Naming: named after 17th century French astronomer Pierre Gassendi

No eclipses visible in southern Africa, solar or lunar, are predicted for December 2019 (see footnote on page 2)

Crater Gassendi and Gassendi A (north down)

METEOR SHOWERS

Name	Date & Time of Max	Duration	Radiant	ZHR	velocity	Observing Prospect
December Phoenicids	6 December 20h30 to 02h00	3 to 9 December	7º NW of Achernar (α Eri)	5	22	Poor
Geminids	14 December 23h30 to 03h00	4 to 16 December	About 3 [°] WNW of Castor (α Gem)	50	36	Unfavourable
Puppid-Velids	29 December 22h30 to 03h30	5 December to 7 January	About 23º east of Acrux (α Cru)	5	40	Favourable

Guide to the table above:

ZHR – zenithal hourly rate vel. - velocity in km per second

For more details regarding meteor watching, please see the Sky Guide Africa South (SGAS), pages 86-87.

4. STARGAZING

SUGGESTED OBSERVATION DAYS

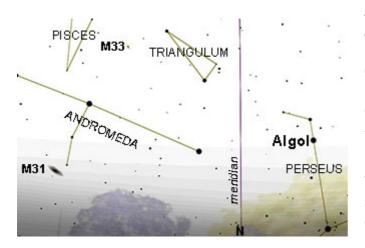
Unless *specifically* targeting the moon, may I suggest the most convenient dates to plan evening stargazing are from **17**th (moonrise at 23h19) to **29**th **November** (moonset at 22h33, 10%). Then from **17**th (moonrise 23h42) to **29**th **December** (moonset 22h38).

The next club stargazing evening is provisionally scheduled for **29**th or **30**th **November**. Members will receive updated information by e-mail. Also, please check our website calendar. <u>http://www.hermanusastronomy.co.za</u>) Remember, it's always weather dependant!

BINOCULAR HIGHLIGHTS

This month, we shall devote the monthly "Deep Sky highlights" section to binocular users. It is really not essential to use expensive and unwieldy equipment to enjoy stargazing. The commonly used 7x50 or 10x50 is quite capable of observing down to a magnitude of +10 (a good human eye on a clear night does well to see a magnitude of +6!) so modest binoculars can hugely increase the scope of our observing.

Perseus was the mythical Greek hero who used the severed Gorgon Medusa's head to turn the sea monster Cetus into stone. To the Greeks, Algol represented the "evil eye" of Medusa probably because of its regularly changing brightness and colour.


Known in English as "the Demon Star", the name Algol derives from the Arabic "ra's al-ghul", meaning "head of the ghoul", also probably given due to the star's peculiar behaviour. In Hebrew folklore, Algol was known as "Rosh ha Satan" or "Satan's Head".

It's also known as "Head of Medusa" and "Gorgonia Prima."

	ALGOL (β Persei, 26 Persei, HIP14576)	NOTES
Description	Eclipsing binary, variable Period 2.8673 days	Low in the north in the constellation Perseus and at a maximum of 14.5° above our theoretical horizon, Algol is available to us for evening viewing for a short
<u>Properties</u>	Algol A – blue-white main sequence Algol B – orange subgiant Algol C – white main sequence	time in December and January. The variability of Algol was first recorded in 1667 by
<u>Distance</u>	89.9 ly, 27.6 pc	Geminiano Montanari but was noticed long before this time. The first person to propose a mechanism for
<u>Magnitude</u>	+2.1 and +12.7 Range +2.11 to +3.39	Algol's variability was the British amateur astronomer John Goodricke. In May 1783 he presented his findings to the Royal Society, suggesting that the
<u>Age</u>	Less than 300 million years old	periodic variability was caused by a dark body passing in front of the star or that the star had a
Location	Constellation Perseus, Max elev. 14.5º	darker region that periodically turned toward earth.

<u>J2000</u> <u>coordinates</u> 3h05m10.1s / +40°57'20.3"

Visibility24 December Algol rises 18h03,
transits 21h40 and sets 01h22Naked eye
BinocularsYes but components not resolvable
YesTelescopesYes

The above Stellarium chart is timed at 21h00 on 24th December. 40 minutes later, Algol will cross the meridian and be at its highest point above the horizon.

In 1881, the Harvard astronomer Edward Pickering presented evidence that Algol was actually an eclipsing binary. This was confirmed in 1889 when the Potsdam astronomer Herman Carl Vogel found periodic Doppler shifts in Algol's spectrum inferring variations in the system's radial velocity. Thus Algol became one of the first known spectroscopic binaries.

Algol is actually a three-star system (designated β Per A, B and C). The large, bright primary (β Per A) is regularly eclipsed by the dimmer β Per B every 2 days 20 hours 49 minutes. Thus Algol's magnitude is usually near constant at 2.1 but regularly dips to 3.4 during the roughly 10 hour-long partial eclipses. β Per A is separated from β Per B by 0.062 AU and from β Per C by 2.69 AU.

There is also a secondary eclipse when the brighter star occults the fainter secondary. But this secondary eclipse can only be detected photoelectrically.

And while we're about it, let's have a look at the nearby **Triangulum** (M33, NGC 598, magnitude 5.7) and **Andromeda** (M31) galaxies, both quite accessible to binoculars. M31, however, is very low and better suited to earlier in the month.

WISHING YOU CLEAR SKIES AND A WONDERFUL FESTIVE SEASON

Please keep in touch...

Don't forget to have a look at our excellent website, edited by Derek Duckitt. <u>http://www.hermanusastronomy.co.za/</u>

Also...

ASSA website http://assa.saao.ac.za <u>ASSA Deep-Sky Section</u> <u>Whatsappchat</u> group: [074 100 7237] <u>MNASSAhttp://assa.saao.ac.za/about/publications/mnassa/</u> <u>Nightfall https://assa.saao.ac.za/?s=Nightfall</u> <u>Official Big 5 of the African Sky web page</u> <u>Official Big 5 Facebook group</u> <u>ASSA Deep-Sky Section mailing list</u>

Contact ASSA

Get in touch with officers of the Society - we're real people with a passion for astronomy, <u>so contact us and let's talk</u>! You can find us on <u>Facebook</u>, <u>Twitter</u>, the <u>ASSAInfo mailing list</u> and the <u>ASSADiscussion mailing list</u>.

Grateful thanks to the following:

ASSA Auke Slotegraaf Johan Retief Sky Guide Africa South 2019 Sky Safari Stellarium

Edited by Peter Harvey e-mail:<u>petermh@hermanus.co.za</u> Tel: 081 212 9481